Fully metallated S134N Cu,Zn-superoxide dismutase displays abnormal mobility and intermolecular contacts in solution.
نویسندگان
چکیده
S134N copper-zinc superoxide dismutase (SOD1) is one of the many mutant SOD1 proteins known to cause familial amyotrophic lateral sclerosis. Earlier studies demonstrated that partially metal-deficient S134N SOD1 crystallized in filament-like arrays with abnormal contacts between the individual protein molecules. Because protein aggregation is implicated in SOD1-linked familial amyotrophic lateral sclerosis, abnormal intermolecular interactions between mutant SOD1 proteins could be relevant to the mechanism of pathogenesis in the disease. We have therefore applied NMR methods to ascertain whether abnormal contacts also form between S134N SOD1 molecules in solution and whether Cys-6 or Cys-111 plays any role in the aggregation. Our studies demonstrate that the behavior of fully metallated S134N SOD1 is dramatically different from that of fully metallated wild type SOD1 with a region of subnanosecond mobility located close to the site of the mutation. Such a high degree of mobility is usually seen only in the apo form of wild type SOD1, because binding of zinc to the zinc site normally immobilizes that region. In addition, concentration-dependent chemical shift differences were observed for S134N SOD1 that were not observed for wild type SOD1, indicative of abnormal intermolecular contacts in solution. We have here also established that the two free cysteines (6 and 111) do not play a role in this behavior.
منابع مشابه
Metal-Free ALS Variants of Dimeric Human Cu,Zn-Superoxide Dismutase Have Enhanced Populations of Monomeric Species
Amino acid replacements at dozens of positions in the dimeric protein human, Cu,Zn superoxide dismutase (SOD1) can cause amyotrophic lateral sclerosis (ALS). Although it has long been hypothesized that these mutations might enhance the populations of marginally-stable aggregation-prone species responsible for cellular toxicity, there has been little quantitative evidence to support this notion....
متن کاملMolecular dynamics using atomic-resolution structure reveal structural fluctuations that may lead to polymerization of human Cu-Zn superoxide dismutase.
Mutations of the gene encoding Cu-Zn superoxide dismutase (SOD1) cause 20% of the familial cases of the progressive neurodegenerative disease ALS. A growing body of evidence suggests that in familial ALS (FALS) it is the molecular behavior of the metal-depleted SOD1 dimer that leads to a gain of toxic properties by misfolding, unfolding, and aggregation. Structural studies have so far provided ...
متن کاملSequence and structural determinants of Cu, Zn superoxide dismutase aggregation.
Diverse point mutations in the enzyme Cu, Zn superoxide dismutase (SOD1) are linked to its aggregation in the familial form of the disease amyotrophic lateral sclerosis. The disease-associated mutations are known to destabilize the protein, but the structural basis of the aggregation of the destabilized protein and the structure of aggregates are not well understood. Here, we investigate in sil...
متن کاملAberrant zinc binding to immature conformers of metal-free copper-zinc superoxide dismutase triggers amorphous aggregation.
Superoxide dismutase 1 (SOD1) is a Cu/Zn metalloenzyme that aggregates in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. Correct metal insertion during SOD1 biosynthesis is critical to prevent misfolding; however Zn(2+) can bind to the copper-site leading to an aberrantly metallated protein. These effects of Zn(2+) misligation on SOD1 aggregation remain to be explored,...
متن کاملRegulation of the synthesis of superoxide dismutases in rat lungs during oxidant and hyperthermic stresses.
Heat shock proteins are induced at normal temperatures by oxidants and during reoxygenation following hypoxia. We now report cyanide-resistant O2 consumption increased 30-50% in rat lungs exposed to heat shock or reoxygenation following hypoxia. The synthesis of Cu,Zn superoxide dismutase, but not Mn superoxide dismutase, was increased in rat lung slices by in vivo hyperthermia (39 degrees C), ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 43 شماره
صفحات -
تاریخ انتشار 2005